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In this paper, we improve a theorem on Hakopian interpolation due to the first
author. We also propose a new kind of cubature scheme on the disk, which is
convergent for the continuous functions.  © 1997 Academic Press

1. INTRODUCTION

In 1982, Hakopian [ 1] proposed a new kind of multivariate interpolation,
which is a development of Kergin interpolation (see [ 2—4]). Wang and Lai
[5] studied in 1984 the remainder of the interpolation and established the
convergence for the analytic functions. A Lagrange representation of the
bivariate Hakopian interpolation was given in [6, 7]. We proved also a
convergence theorem for sufficiently smooth functions defined on the unit
disk (1986). Recently, in 1992, the convergence of the derivative of the
bivariate Hakopian interpolation on the disk was also discussed in [8].
Our main purpose in this paper is to discuss further the convergence of
Hakopian interpolation and to propose a new kind of cubature scheme
based on this kind of interpolation.

Let D denote the unit disk

D={X=(x,y) | x*+y*<1},
and let C(D) denote the space of all continuous functions defined on D. Set

E,(f):= inf —max|f(X)—p(X)|,

penm(R?) XeD
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HAKOPIAN INTERPOLATION AND CUBATURE 29

where 7,,(R?) is the space of all real bivariate polynomials of total degree
< m. Given the natural number n>2, we choose

T
Xk=<cos2kn, sin2kn> , k=1,2,..n
n n

as the nodes of Hakopian interpolation on the disk. Denote
1
j f= j FXE 4 o(X— X5)) de.
[Xx*, x1 0

On the basis of the results in [6], Liang has given the following
theorems (see [7]).

THEOREM 1. For any f(X)e C(R?), there exists a unmique polynomial
P(X)=H,(f; X)en, »(R?), such that

j f—P=0, O<k<I<n
[xk x1]

Here P(X)=H,(f; X) denotes the Hakopian interpolation polynomial of
f(x,y)e C(D) with respect to the n nodes, and we have the following
representation:

H(fiX)= Y LX)

I<k<I<n [X* x']

freon(57n-0))
Wy 1| 7 cos Tn—@

where

L» —
k,l(X) ) < Z—k > s
Wi, | cos—m
n
n _2
we (1) = <tcos Wﬂ),
=14k h
X=(x,y)"=(rcos@,rsin )"

THEOREM 2. There exists an absolute constant A such that for any
f(X)e C(D) and any X e D, the following inequality is valid:

0 — Hy(f: x| < An2l])

S J1—XTx

nlog n.
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A number of improvements on Theorem 2 are made in Section 2. In Sec-
tion 3, after introducing a new kind of cubature scheme for the bivariate
continuous functions defined on the disk, the convergence of integration of

Hakopian interpolation is established and the algebraic exactness of the
scheme is also discussed.

2. THE CONVERGENCE OF HAKOPIAN INTERPOLATION ON
THE DISK

Let

T,(t)=cos(m -arccos t),

U, (1) =T,(1),
k+1 ~ ~
t=rcos<+n—9>=cos<9, 0el0,n].
n
We need the following lemmas.

LemMmA 3. If n=2m, then we have

& % sin? 0, U, (1)

L m* |t —cos 0| = O(mlog m), )
j=1 i=1 i
where
t=rcos<n—0>, j=12, .., m;
i
0,=—m, i=1,.,m—1
m
& & sin? 0, | Uy, (1))
XX m2|l—zosé| = O(mlog m), (2)
j=1 i=1 i
where
2j—1
t=rcos<]2m n—0>, j=12, .., m
2i—1
_Z 7, i=1,..m
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Proof.  We are going to prove (1) only. The proof of (2) is similar.
In fact, setting ¢ =cos 0, we have

7"~ 1sin®0,|U,,_(t)] "' sin®0,-m-|sin mo|

2 m?[t—cos 0, [:1m2|cos§—cosé’,—|\/ﬁ

_"s ! Isin 0, —sin 0||sin 0,| m |sin m0)|

~ ~
=1 m?|cosO—cos 0| /11—
71 Isin 0, m |sin m0|
=1 m? |cos O —cos 0,
=1, +1,.

Noting that for 6,, e [0, n],

sin §,> 0, sin >0,

we have

m—1

sin @, — sin ||sin 0, + sin 0] m |sin md
) <y sin 0,=sin 7l | m |sin md]

P m? |cos 0 —cos 0,] /1 — >

0+0, . 00, 0+0, -0, ~
_,2-|cos * *.sin ——| -2 |sin * L. cos 2| |sin m0)|
_m 2 2
iz _0+0, . d—0,
! m-2 |sin 2% gin 1 —¢?
2
<'"*12.|sinm§|<2.|smm§|
\,‘21 m\/iﬂ\ 1/1—1’2 ’
we might as well assume that
k k+1
—n<f<——nm.
m m
Since
sin mf sin m0
r<l and ‘ = —| <1,
m/1—t*1 |msin0
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then
m m : ol k—2 : ol m : ol
l‘ Z £< Z sm~m<9~ <4 sm.mB~ sm.m0~‘
2 5 m Z imsin 0 =1 lmsin@l ;_ki3lmsind
k—2 1
<4+ ) -
‘i_lm\/l—r2c0s2<]n—0>
m
1

+ ) .
"'_k”m\/l—rzcos2 <]n—0>
m

m—2
<4+2 )

Jj=2

= O(log m).
msin—n
m

Therefore

Y. I, =0(mlog m).

j=1
Next, similar to the results in [ 7], we can prove

1 . . ~

’” |sin 6, ||sin md)|
I,= ~ = O(log m).
: ,-; m |cos O —cos 0|

Hence

This completes the proof of (1).

LEMMA 4. Let

Then we have
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Proof. (1) 1If nis even, let n=2m and then L, ,(X) can be expressed
as follows:

20 - R
n 1U2m71(t)_ (T,.(2))

2< I—k > 2 I—k ¢’
m t—cosS——m t—CcoS——mT
n n

if /—kisodd;

sin

Lk,/(X)z

sin? % n-U, (1)
Lk,l(X)z_ 2Tm([)+

2< I—k >
m- | t—cos T
n

if /—kiseven.

We have
In(X)<Y 4D,
where
sin? 2i—1 T
m m 2/’}’1 1 (Tm(t))2
21: Z Z 2 1 EUZm—l( )_ 2 )
Jj=1i=1_2 - i—1
m~ |t —Ccos T t—cos T
2m 2m

m  m—1

Y=Y ¥ |21+

j=1 i=1

t=rcos<J7z—0>, j=12, .., m
m

Taking into account (1) and the relations
(1= U, (1)
|T,.(1)] = O(1), —————==0(1),

mZ

1
t—cos—m
m
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we get
Y., = O(mlogm).

By use of (2) and the relations (see [9])

sinf,-T,,t)
m(t—cos 6;)

“ “ |Si1'l ()ll ) Tm(t)

2 X

j=1 i=1

=0(1),

=0(m1l ,
m |t —cos 0, | (m log m)

we have
Y., = O(mlogm).

Therefore
An(X)=O(mlog m)= O(nlogn).

(IT) Ifnis odd, let n=2m—1 and let

R = =
mfl(t) t+l Coslg s
2
. < 1>§
smi{m-——
S (t)_Tm(l)_Tmfl( ) 2
m—1 Z—l ] lé’
Sll’l2

if /—kisodd;

bl
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— , if [—kiseven.

t—cos =k
2m—17Z
We can prove that
m m—1 ZSinzz_ 17I|Rn7—l(t)|
m_
Yoy = O(nlogn),
J=1 =1 (2m—1)‘t—coszm_1n
where
2j+1
t=rcos< /+ 7r—0>, j=12,..,.m;
2m—1
I—k=2i—1, i=1,.,m—1.
Furthermore
(1+ )[Rl
————=0(1
m—1 (1),
I—k
1 +cos 7 | |R,,_ (1)
2m—1
- =0(1)
2m—1) |t —
(2m )‘ coszm_ln

Similar relations hold also for even /— k. So we have
A (X)=0O(nlog n),
which completes the proof of Lemma 4.

The following theorem is our main result:

THEOREM 5. There exists an absolute constant A such that for any X € D,
f(X)e C(D), and n=2, we have

|f(X)—H,(f; X)|<AE,_,(f)-nlogn.
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Proof. Let O, ,(X)em, (R?) be the best approximation polynomial
of f(X) on D, ie.,

max | f(X) — Q(X)| = E, (/).

XeD

Then
|/(X) = H,(f; | <|/(X)=Q, _o(X)| + |[H,(f—Q,_>; X)I
<(1+4,(X) E, (/).

Now we apply Lemma 4 and complete the proof of the theorem.
From [8], we have

COROLLARY 6. For any f(X)e C¥(D), n=2 and any Xe D,

|f(X) = H,(f; X)| = O(n'~*log n).

3. THE CONVERGENCE OF INTEGRATION OF THE
TWO-VARIABLE HAKOPIAN INTERPOLATION

We first give several auxiliary lemmas.

LEMMA 7. Let

Ay l—ﬂ Lk,/(xsy) dx dy (4)
Then we have
dr . -k
Aky,zﬁsm — .

Proof. For the sake of simplicity, we write

S() =wy (1),

[—k
c=f, <COS77:>.
n
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Using the rotation transformation
k+1 = ((k+ D))z : .
t=r<cosn—0 2 Dz r-cosa-cosf+r-sino-sin 6
n

=Xx-coso+y-sina,
'=—x-sina+y-cosa,

we get

dx dy

e (5m-))
Wi | rcos| ——m—0

n
nml,

Wi, 1| COS TTE
1 4
= || 1y dedy

= ryacar
lf] jm

cd I -a)e

#=sino 1 (72
—_— fj (f(cos 8) —f(—cos 0)) cos 0 d

CJ_np

fu()dedt

1 27
=ff f(cos 6) cos 0 db.
0

c

Next, we prove the lemma in the following two cases:

(I) Ifnis even, let n=2m. It is not difficult to verify that

2
N cos’(m arcc;s ) if /—kisodd;

t—cos—n
n
fin={
sin?(m - arccos t)

Co I—k
I—CcoS—T
n

if /—kiseven,

I—k 2
c=f’t<cos P n>=c(,27_k,

sin®- ——m
n

where ¢, is a constant.

37
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Assume first that /—k is odd. Then

.=k
M cos” ml
A= > f cos 0 db
m 0 —
cosf—cos—m
n
.=k
sin“——mn
n 2n I—k (2= cos? ml
= j cos” ml df + cos n{ do | ,
m 0 0 -
cosf—cos—m
n
where

2r 2n
f cos? mo d@:j L(1 + cos 2m0) d = n.
0 0

Using the quadrature scheme (see [9])

2m 2_1

Y g0). 0= —m i=12..n
m

=1

j: 2(0) do =

T
m i
of trigonometric degree of precision 2m — 1 (where g(0) is a trigonometric
function with a period 27), we have

do=0

r” cosZ ml
0

1—k
cosf—cos—m
n

(we used here the L’Hospital’s rule). Therefore

sin2ﬂn
_4n [—k

Ay = =— sin’
n

T .

m? n
The deduction is similar in case of even [/ —k, where

sin’ mo

g(0) =

cos 0 —cos—n
n

The corresponding points here are
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(IT) Ifnis odd (say n=2m—1), we have

(cos(m - arccos t) + cos((m — 1) - arccos t))?
Cy
I—k
(t+1)<t—cos n>
n

(cos(m - arccos t) —cos((m — 1) - arccos t))?

(t—1) <t—cosl_kn>
n

—k 2m—1)?
c=f’,<coslnn>=cl(m),

=k
2sin>——x
n

if [/—kisodd;

()=

¢ if [/—kiseven,

where ¢, is a constant.
In the following we deduce the same result in case of odd /— k. The even
case is similar.

I—k

2 sin? 7

4 n r" (cos m0 + cos(m — 1) 0)?
k= T )2 —
(2m—=1)" o <c0s0—coslnkn>(1+cos0)

cos 0 do

2m —
2

1 0
0 cos? =

I—k
2sin?——nx 4 cos?

n

2r
2m—1)? L <

cos 0 df

I—k
cos ()—c:osn>2cos2
n 2

—k

. 2m—1
4sin>——7 _ cos
n Y4

2

6.cos 0

do.

2;
(2m—1)? Jo 1—k
cos 0—00577[

The rest deduction is similar to the case of even n, we choose here

cos?

2m—1
2 0 2i—1

I—k °  iTom—1™
cos—cos—n
n

g(0)= i=1,2,..,2m—1.
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So, at all events, we get

dr . 1k
A =—5sin"——m,
n n

which completes the proof.
The lemma implies

[ Hpsxpyaxar=[[ (T Lixy) j[qu qu) dx dy

D D<1<k<l<n

= X f[Xk’Xl]quDHn(f;x,y)dxdy>

1<k<lI<n

= z Ak,/J f
[X% x']

dn . -k
= Z 725111 TT[J

l<k<i<n [xk x7”
In this way, we get the cubature scheme on the unit disk: V£ (x, y) e C(D),

4 _
H fx,y)dxdy= ), gsin2gn
D

l<k<i<n T n j[X",X’]

(%)

The geometrical interpretation of the coefficient A4, ; is illustrated in
Fig. 1. Let L denote the length of the chord between point 0 and point
(2(/—k)/n)7 on the unit circle. Then

T
72
Ak?]—L '72.

n

LemMA 8. If A, , is defined as in (4), then we have
Y A =m.
1<k<lI<n

Proof. By Theorem 1, the relation (x) holds for all bivariate polyno-
mials of degree <n—2. Since n > 2, the relation holds in particular for the
constant function, which implies

Z Ak,/: Z TSIH Tkn:n.

I1<k<lI<n I<k<li<n

This completes the proof.
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FIGURE 1
The following two theorems are the main results in this section.

THEOREM 9. For a given f(x, y)e C(D), we have

lim U H,,(f;x,y)dxdyzﬂ fdx dy.

n— oo D D

Proof. Let P, ,(x,y)em, ,(R?) be the best approximation polyno-
mial of f(x, y), ie.

max |f(xa y)_Pn72(x9 y)| :Enfz(f')'

(x,y)eD

By Theorem 1 and Lemma 8, we have
([, sixrasar=Jf fixyrdsay
D D

< ‘ HD H(f—P, ,;x,y)dxdy|+ ‘HD (f— P, ) dxdy

| ] er| [ e dray)
I<k<i<n [x* x1 D

< Y Aul| o UP)| B )
I<k<I<n [Xx* x']

Su-E, (f)+7-E,_(f)

=2n-E, ,(f)—0 if n- oo.
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This completes the proof on convergence of integration of Hakopian inter-
polation.

THEOREM 10. The cubature scheme

”Df(x,y)dxdyg Y —sin’—nx-

I<k<lI<n

is exact for any bivariate polynomial of degree <n—1 at least.

Proof. Noticing that by Theorem 1, the algebraic exactness of
Hakopian interpolation is n —2 at least, then, in order to show that the
theorem is true, we only need to prove the relation (x) holds for all
bivariate homogeneous polynomials of degree n — 1. In order to do this, we
choose

and consider n homogeneous polynomials
fix,y)=(x-cosa;+y-sine;)" ",  j=0,1,..,n—1,

which are linearly independent from each other. They constitute a basis of
all homogeneous polynomials of degree n — 1. So we only need to check the
equalities

” filx,y)ydedy="3 Tsinz—nj fno J=0,1,.,n—1,
D n [xk, x1]

1<k<lI<n

where

2kn 21 2k 2
J 1 J <1t cosi—i—t n,(lt)sinn-l—tosinhz)dt
[ X%, x1] ’ n n n n
2kn 2In n—1
j (1—1)cos 7—0{_,— +t-cos 7—0(_,- dt
g (s () (o ()
- — ——a .
n .= n / n 4
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The right-hand side of (5) is

:Z ¥ % fimeos (3T, cos (2= Josin (s, )|
S [
LG

(o)
2 o ) )

We assert that if i =0, n — 1, the later two terms in the sum above are zero.
Since the trigonometric exactness of the quadrature scheme

[ mow-3y 7(S5H) ®

(where j is a constant) is n— 1, it follows that

w2

s 2n
Z <2k7z a,>:2"nf0 cos 0 dO =0. (7)

Therefore, in case i =0, the second term in the sum is

}ZT cos <2k7z > iil <cos <2:T—ocj>>n =0.
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The rest of the proof of the assertion is similar. Hence

S=E (Y § 5 (eon () (cos (o))
S () fes(2)
_21 ,ZI Z an (22, Yoos (225,

Next, we prove the theorem in the following two cases:

(I) If n is even, using the fact that
2n
[ cosmodo=0,  irmis odd, (8)
0
we conclude that the left hand side of (5) is
1 2n
ﬂ f;dxdyzj % drf cos” (0 —a,) dO =O0.
D 0 0

On the other hand, since the sum of the exponents of cos((2/n/n) —«) and
cos((2kmn/n) —a;) is odd, there must be one term of S with odd exponent
which is no greater than n— 1. By (7) and quardrature scheme (6), we can
get S =0, which shows that the relation (5) is true in this case.

(IT)  We require the following lemma in case of odd n.

LemmA 11. For a nonnegative integer n, the following relation holds:

m(2i— 1) (2m—2i—1)!! o Cm+1)
Im 2 EO (2i+2)!! (@m =200 = @)

The proof is omitted.
Let n=2m + 1, using the integral formula:

2n (2m—1)!
2m _ .
L cos Hdﬁ—i(z T 27, (10)



HAKOPIAN INTERPOLATION AND CUBATURE 45

we calculate the left hand side of (5):

1 2m— 1)l
drj r2m+l 0082111(8_aj)d0:( m ) .

Hij(x,y)dxdyzj . m

0

On the other side, by (6), (8), (10) and Lemma 11, we get in the right hand
side of (5):

b m n n 2k71' 2i 217_[ 2m—2i
S:* —_— —_— 0.
<2m+1>n2{,. e kzl<°°s<n °‘>> <C°S<n °‘>>
(oo (=) (e (52)) )
CoS 7—0(1- CoS 7—O(j
1 n n

7 mof L Qi— 1) (2m—2i— )
{ <”' (20)!1 (2m — 2i)!!

Qi+ DI 2m—2i— 1IN (2m+ 1!
T T 2 ) (2m—2i)! > " (2m+2)!!}

7 moi— D (2m—2i— 1)1 (2m+ 1!
(2m+1){z (2m +2)!1 (2m — 2i)!! (2m+2)!!}

L, Cma D! (2m— 1)

i=0

Tt 1l TCmi2n emion T

The relation (5) is true in case of odd n.

To sum up, the cubature scheme () is exact for all polynomials of
degree <n—1, ie., its algebraic degree of precision is at least n — 1. The
proof of Theorem 10 is finished.

In some simple cases as n =2, we can prove that the algebraic degree of
precision of the cubature scheme () is just n — 1.

4. GEOMETRICAL AND PHYSICAL INTERPRETATION
The value [y« 4/, can be regarded as observations on x-rays in medical
diagnosis. So Hakopian interpolation will be of value in this field (for
example, in computed tomography).
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